Chemistry Topic 3: Quantitative chemistry

1. Keywords		
Conservation of mass	No atoms are made or lost during a chemical reaction. The mass before the reaction must equal the mass after a reaction IN A CLOSED SYSTEM	
Closed system	A container which no chemicals can escape. Eg a sealed bottle	
Relative formula mass (Mr)	Sum of relative atomic masses from periodic table	
Balanced equation	When the sum of the Mr on the left equals the sum of the Mr on the right	
Uncertainty	The percentage of a result that might be wrong. Shown from differences between repeats	
Limiting reactant	The reactant which runs out first	

3a. Concentration				
$C = \frac{mass}{V}$				
С	Concentration	g/dm ³		
mass	mass	g		
V	volume	dm³ (litres)		

2. Moles (HT ONLY)	
Mole	The number of particles needed to make the mass equal the atomic mass
Avogadro constant	6.022x10 ²³ particles in 1 mole

3b. Concentration (HT ONLY)				
$C = \frac{m}{V}$				
С	Concentration	mol/dm ³		
m	mole			
V	volume	dm ³ (litres)		

4. Percentage yield (TRIPLE ONLY)

%Yieldmass of actual
Maximum massx 100%YieldPercentage yield%mass of actualMass of product actually
obtainedgMaximum massThe theoretical maximumg

6. Volume of gases (TRIPLE HT ONLY)		
1 mole of gas occupies 24 dm ³	If 20°C and 1 atmosphere pressure	
Equal moles occupy the same volume		

mass possible

% Atom economy = $\frac{Mr \ of \ desired \ product}{Sum \ of \ Mr \ for \ all \ reactants} x \ 100$			
% Atom economy	Percentage atom economy	%	
Mr of desired product	Relative formula mass of the product you want	g/mol	
Sum of Mr for all reactants	The total of all the react Mr added together	g/mol	