



Physics Topic 3: Particle model

- A. Evaporation/Vaporisation
- B. Condensation
- C. Melting/Fusion
- D. Freezing
- E. Increasing internal energy

3. The specific heat capacity

Energy = mass, m x Specific heat x Temperature capacity, c change, $\Delta\theta$ (joules, J) (joule per kilogram (degree Celsius, per degree Celsius, J/kg°C)

To find the specific heat capacity of a substance the equation can be rearranged to: $c = \frac{\Delta E}{m\Delta \theta}$

4. The specific latent heat

Energy transferred, ΔE = mass, m x Latent heat, L (joules, J) (kilograms, kg) (joule per kilogram J/kg)

To find the specific latent heat of a substance the equation can be rearranged to:

6. Pressure in gases (TRIPLE ONLY)		
change	effect	reason
Increase Pressure	Increase volume	More particles so more collisions Increase the force stretching the balloon until the forces balance
Decrease pressure	Decrease volume	Less particles so less collision. Decrease the force causing the balloon to contract until the forces balance
Formula	pV=constant	If fixed mass and constant temperature