| Coastal Defen | ces | | Water Cycle Key Terms | | | | Lower Course of a River | | | | |--|---|--|--|--|--|--|---|--|---------------------------------|--| | Hard Engineerin | g Defences | | Precipitation | Moisture falling f | rom clouds as rain, sn | ow or hail. | Near | Near the river's mouth, the river widens further and becomes flatter. Material transported is deposited. | | | | Groynes | Wood barriers
prevent
longshore drift,
so the beach
can build up. | ✓ Beach still accessible. X No deposition further down coast = erodes faster. | Interception | Vegetation preve | ent water reaching the | ground. | F | Formation of Floodplains and levees | rees Natural levees | | | | | | Surface Runoff Water flowing of | | lowing over surface of the land into rivers | | When | en a river floods, fine silt/alluvium is deposited | River | | | | | | Infiltration | Water absorbed into the soil from the ground. | | | | he valley floor. Closer to the river's banks, the vier materials build up to form natural levees. | | | | Sea Walls | Concrete walls
break up the
energy of the
wave . Has a lip
to stop waves
going over. | ✓ Long life span ✓ Protects from flooding X Curved shape encourages erosion of beach deposits. | Transpiration | Transpiration Water lost through leaves of plants. | | | 1 | Nutrient rich soil makes it ideal for farming. | | | | | | | Physical and Human Causes of Flooding. | | | | ✓ Flat land for building houses. | | | | | | | | Physical: Prolong & heavy rainfall Long periods of rain causes soil to become saturated leading runoff. | | Physical: Geology Impermeable rocks causes surface runoff to increase river discharge. | | River Management Schemes | | | | | | | | | | | | Soft E | Ingineering | Hard Engineering | | | Gabions or
Rip Rap | Cages of rocks/boulders absorb the waves energy, protecting the cliff behind. | ✓ Cheap ✓ Local material can be used to look less strange. X Will need replacing. | Physical: Relief Steep-sided valleys to flow quickly into greater discharge. Upper Course of a F | rivers causing | | | reduce
Demo
warnir
Manag | Straightening Channel – increases velocity to remove flood water. Demountable Flood Barriers put in place when varning raised. Managed Flooding – naturally let areas flood, rotect settlements. Straightening Channel – increases velocity to remove flood water. Artificial Levees – heightens river so flood water is contained. Deepening or widening river to increase capacity for a flood. | | | | Soft Engineering | Defences | | Near the source, the river flows over steep gradient from the hill/mountains. | | | | | | | | | Beach | Beaches built
up with sand,
so waves have
to travel
further before
eroding cliffs. | ✓ Cheap | This gives the river a lot of energy, so it will erode the riverbed vertically to form narrow valleys. | | | | Hydrographs and River Discharge | | | | | Nourishment | | Beach for tourists. Storms = need replacing. Offshore dredging damages seabed. | | | | | River discharge is the volume of water that flows in a river. Hydrographs who discharge at a certain point in a river changes over time in relation to rainfall | | | | | | | | Formation of a Waterfall | | | | | | | | | | | | 1) River flows over alternative types of rocks. 2) River erodes soft rock faster creating a step. 3) Further hydraulic action and abrasion form a plunge pool beneath. | | | 1. Peak discharge is the discharge in a period of time. Runoff (cumess) | | | | | | Managed | Low value | ✓ Reduce flood risk | | | | | | | | | | Retreat | areas of the
coast are left to
flood & erode. | Creates wildlife habitats.Compensation for land. | | | | _ | 2. Lag time is the delay between peak rainfall and peak discharge. | | | | | Case Study: Dawlish Warren | | | 4) Hard rock above is undercut leaving cap rock which collapses providing more material for | | | | | 3. Rising limb is the increase in river discharge. | | | | Location and Ba | | | erosion. | | | | 4. Fal | 4. Falling limb is the decrease in river | | | | Located on the South-West coast of the UK. The town is a popular seaside resort for tourists to visit all year round. Since 1978, it has | | | 5) Waterfall retreats leaving steep sided gorge. | | | sided gorge. | | scharge to normal level. Day 1 Day 2 Day 3 Day 4 Time | | | | been a designate
the area. | d nature reserve. Fish | ning is an important industry in | Middle Course of a River | | | | | Case Study: The River Tees | | | | | ocated at Dawlish Wa | | Here the gradient get gentler, so the water has less energy and moves r slowly. The river will begin to erode laterally making the river wide | | | | | Location and Background Located in the North of England and flows 137km from the Pennines to the North Sea at Red Car. | | | | High spring tides and storm surges have both impacted the level of erosion. Building houses and developing transport links since the 1930s have both shaped the coastline | | | Formation of Ox-bow Lakes | | | | | Geomorphic Processes Upper – Features include V-Shaped valley, rapids and | | | | | | | Step 1 Step 2 | | | Step 2 | | waterfalls. High Force waterfall drops 21m and is made | | | | | | | Ero: | sion of outer bank | ** | Further hydraulic | : | from harder Whinstone and softer limestone Gradually a gorge has been formed. | Castle Darlington Middlestrough | | | Management -A number of gro | ynes. These trap sand | d to build up the beach for | forms river cliff. Deposition inner bank | | action and abras
of outer banks, i | | | Middle – Features include meanders and ox-bow lakes. The meander near Yarm encloses the town. | | | | better protection. -After storms in 1990 the western end of the spit was repaired with 35,000 tonnes of granite imported from Norway and deposited at the foot of the sea wall. | | | forms slip off slope | | gets smaller. | | | Lower – Greater lateral erosion creates feature floodplains & levees. Mudflats at the river's e | 0 20km = = | | | | | | Step 3 | | | Step 4 | | Management | | | | -There has bee | n a 300m 'backbor | e' of rock gabions built | Erosion breaks through neck, so river takes the fastest route, redirecting flow | | Elen JD | Evaporation and | | -Towns such as Yarm and Middleborough are economically and socially important due to houses and jobs that are located there. | | | | - There has bee | ind dunes to hold t
en a 300m sea wall
ith a promenade o | built next to the existing | | | | deposition cuts of
main channel leav
an oxbow lake. | | -Dams and reservoirs in the upper course, controls river's flow during high & low rainfall. - Better flood warning systems, more flood zoning and river dredging reduces flooding. | | |