

Forces are measured in Newtons, N. When one force is bigger than another, the object will experience a resultant force. If a resultant force acting on an object is bigger than 0 N it will either:

- Change its speed (e.g. accelerate or decelerate)
- Change its direction

Resultant force examples:

5 N

20 N

Resultant force = 20 N - 5 N

Resultant force = 15 N

Investigating Springs

5 N

When you apply a force to a spring, the spring will stretch. The amount it stretches by is known as the **extension**.

How to measure extension: Original Spring length = 2 cm Stretched spring length = 8cm Extension = 8 cm - 2 cmExtension = 6 cm

With all elastic objects, the extension of the object is directly proportional to the force being applied.

CORE Questions

The following are core questions for this topic. Cover the answer section with a sheet of paper and try and quiz yourself. Only try learning 5 at a time, once you know them move on.

1	Give two examples of contact forces.	Any two from: friction, air resistance, tension
2	Give two examples of non-contact forces.	Any two from: magnetic, electrostatic and weight
3	True or False. Forces are push or pulls which always act in pairs.	True.
4	Which forces always acts in a downwards direction?	Weight
5	Name a force which resists the movement of an object.	Friction or a drag force.
6	State three ways a force can affect an object if the forces are unbalanced.	Change its speed, direction and shape
7	State the unit forces are measured in.	Newtons, N
8	A car drives with a force of 80N and the friction is 30N. Calculate the resultant force.	80 - 30 = 50N
9	A skydiver is falling with a weight of 100N at a constant speed. Suggest the value of the air resistance force.	100N. Since the speed is constant they must be balanced.
10	The force applied to a spring is directly proportional to the extension. Suggest what would happen to the extension of the spring if the force doubles.	The springs extension would double as well
11	When you collect data which could take any value. Should it be plotted on a line graph or a bar chart?	Line graph
12	State the unit for measuring weight.	Newtons, N
13	State the unit for measuring mass.	Kilograms, Kg
14	Put into an equation: weight, mass and gravity	Weight = Mass x Gravity
15	A man with a mass of 50Kg is on a planet with a gravitational field strength of 5N/Kg. Calculate his weight.	W = m x g W = 50 x 5 W = 250N
16	What is the name of the downwards force that pulls you towards earth?	Weight
17	State the units for measuring work done.	Joules, J
18	True or False. Work done means force transferred.	False. It means energy transferred.
19	Put into an equation: work done, force and distance.	Work Done = Force x Distance
20	A crane lifts a crate 100m into the air with a force of 10N. Calculate the work done to lift it.	w = f x d w = 10 x 100 w = 1000J

X