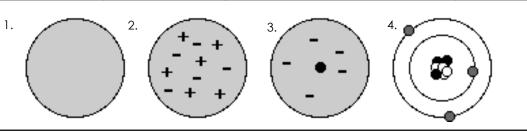
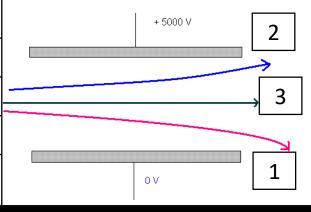

Physics topic 4: Atomic structure

1. Keywords	
1. Atom	The smallest possible piece of an element. Has a radius of 0.1nm (or 1x10 ⁻¹⁰ m).
2. Element	A substance in which all the atoms have the same atomic number.
3. Isotope	Atoms with the same number of protons but different numbers of neutrons.
4. Molecule	Two or more atoms bonded together
5. Compound	Two or more <u>different</u> atoms bonded together
6. Mixture	At least two different elements or compounds together. Can be separated easily.
7. Nucleus	The centre of an atom. Contains protons and neutrons
8. Proton	A positively charged particle found in the nucleus
9. Neutron	A neutral particle found in the nucleus. Has no charge
10. Electron	A negatively charged particle found in energy levels (shells) around the nucleus

2. Properties of sub-atomic particles				
	Particle	Relative mass	Relative charge	Location
	Proton	1	+1	Nucleus
	Neutron	1	0	Nucleus
	Electron	0	-1	Shells

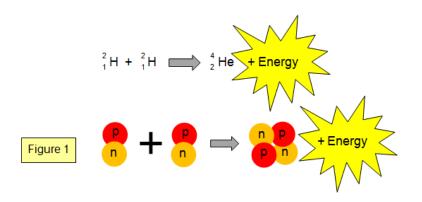

Key

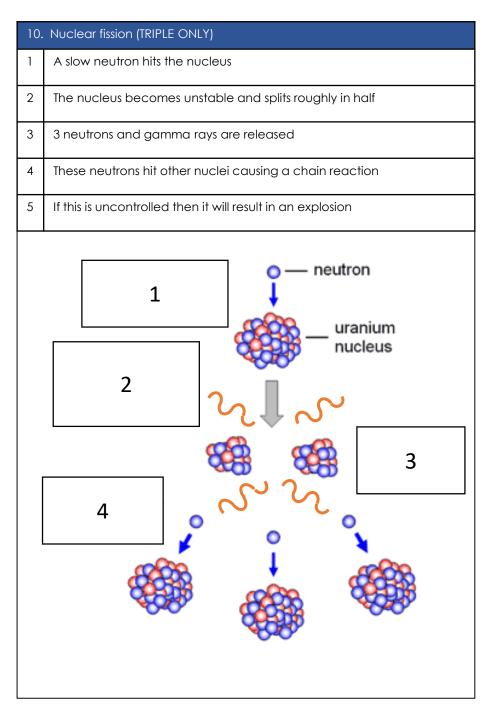
relative atomic mass atomic symbol name atomic (proton) number


3. Using the periodic table				
Number of	Is the	Found by		
Protons	Atomic (proton) number	Smaller number on periodic table		
Electrons Atomic (proton) number		Smaller number on periodic table		
Neutrons	Difference between the atomic mass and atomic number	Big number – small number		

4. History of the a	tom		
Discovery	Ву	Model	Diagram
Solid particle called atom	John Dalton	Particle: solid spheres	1
The electron	JJ Thompson	Plum pudding: positive 'cake' with negative 'plums'	2
Nucleus	Rutherford	Nuclear: Positive nucleus surrounded by electrons	3
Neutron	James Chadwick	Nuclear: Now with protons and neutrons in nucleus	3
Energy levels (shells)	Niels Bohr	Planetary: Electrons now 'orbit' in different shells	4

5. Radioactive decay keywords				
Unstable	The ability for a nucleus to decay			
Radioactive decay	The RANDOM process of radiation being released by a nucleus. A different element in formed			
Nuclear radiation	The energy and particles released when an unstable nucleus decays			
Activity	How quickly a radioactive sample decays			
Becquerel	The unit of activity			
Geiger-Muller tube	A device to measure the count rate of a radioactive source			
Count rate	The number of radioactive decays per second			
lonising power	How well it knocks off electrons and damages cells			
Half life	The time it takes half of a group of radioactive nuclei to decay			
Radioactive contamination	Unwanted hazardous materials containing radioactive atoms			
Peer review	When the findings of one expert are double checked by another expert to make sure they are correct			
6. lonising radia	checked by another expert to make sure they are correct			


7. Background radiation (TRIPLE ONLY)		
Background radiation is the radiation all around us all the time		
Natural sources: Man-made sources:		
• Rocks	Fallout from weapons testing	
Cosmic rays	Fallout from nuclear incidents	



	Name	Symbol	Made of		Charge	Range in air	Penetration	Ionising power
	Nume	Зуппоог	Made of		Charge	Kunge in all	i enelialion	loriisirig powei
1	Alpha	а	Helium nucleus	⁴ ₂ He	+2	5 cm	Blocked by paper and skin	High
2	Beta	β	Fast moving electron	°e	-1	15 cm	Blocked by thick aluminium	Medium
3	Gamma	Υ	Electromagnetic wave		N/A	Very long	Blocked by thick lead	low

8. Uses of nuclear radiation (TRIPLE ONLY)				
Use	Half life	Penetration power	lonising power	Preferred emitter
Exploring internal organs	A few hours	Med-high	Low	Gamma
Radiotherapy	A few years	High	Med/Low	Gamma (or Beta)

9. Nuclear Fission vs Fusion (TRIPLE ONLY)				
Nuclear fission	When a large nuclei breaks into smaller nuclei releasing energy	E.g:Nuclear power stationsAtomic bombsThe core of the Earth		
Nuclear fusion	When small nuclei join together to form larger nuclei. Some mass in converted into energy	E.g: The Sun Hydrogen bombs		

